Scientifica SliceScope upright microscope

The HoloStim-3D seamlessly integrates with the HyperScope, an award-winning multiphoton imaging system, to create an industry-leading spatial light modulator (SLM) system for all-optical interrogation of neural networks with previously unachievable performance.

Scientifica SliceScope

A stable and compact upright microscope designed to meet the demands of complex electrophysiology studies and related techniques - including two-photon imaging and optogenetics.

The small footprint and low noise electronics, as well as the remote control, have made the SliceScope an integral part of electrophysiology rigs around the world, particularly when incorporated into a SliceScope Pro system.


Modular and versatile design

This system is a perfect foundation for many different configurations including in vivo or in vitro electrophysiology, multiphoton imaging and confocal imaging.

Slim profile

The slim profile allows easy placement of other equipment around your sample, including manipulators, light sources and perfusion systems.

Fully motorised control

Remote control of the objective and condenser means focus and Koehler can be controlled away from the sample area. Useful for dark/cramped areas or in vivo samples.

Compatible with a wide range of optics

Choose from a comprehensive range of Olympus objectives, condensers, eyepieces and light sources.

Various contrast and illumination choices

The SliceScope is compatible with fluorescence turrets and a broad range of contrast techniques. Use it with LEDs, halogens and broad spectrum white light sources.

SliceScope 360° view

Control options

Control the focus, condenser, translation stage (if included) from any of our remote control options.

Alternatively use Scientifica’s LinLab software, developed specifically to control all of our motorised components and heating and perfusion elements.

SliceScope Upright Microscope SchematicsSliceScope Upright Microscope SchematicsSliceScope Upright Microscope Schematics

Abs, E/. Poorthuis, R B., Apelblat, D., Muhammad, K., Belen Pardi, M., Enke, L., Kushinsky, D., Pu, DL., Ferdinand Eizinger, M., Conzelmann, K K., Spiegel, I., & Letzkus, J. (2018). Learning-Related Plasticity in Dendrite-Targeting Layer 1 Interneurons. Neuron, 100(3), 684-699.!

Anstotz, M., Lee, S K., & Maccaferri, G. (2018). Expression of TRPV1 channels by Cajal-Retzius cells and layer-specific modulation of synaptic transmission by capsaicin in the mouse hippocampus. The Journal of Physiology, 596(16), 3739 - 3758. https://physoc.onlinelibrary.w...

Ariasm H R., Jin, X., Feuerbach, D., & Drenan, R M. (2017). Selectivity of coronaridine congeners at nicotinic acetylcholine receptors and inhibitory activity on mouse medial habenula. The International Journal of Biochemistry & Cell Biology, 92, 202-209.

Banala, S., Arvin, M C., Bannon, N M., Jin, X-T., Macklin, J J., Wang, Y., Peng, C., Zhao, G., Marshall, J J., Gee, K R., Wokosin, D L., Kim, V J., McIntosh, J M., Contractor, A., Lester, H A., Kozorovitskiy, Y., Drenan, R M., Lavis, L D. (2018). Photoactivatable drugs for nicotinic optopharmacology. Nature Methods, 15, 347-350.

Bao, H., Asrican, B., Li, W., Deisseroth, K., Philpot, B., & Song, J. (2017). Long-Range GABAergic Inputs Regulate Neural Stem Cell Quiescence and Control Adult Hippocampal Neurogenesis. Cell Stem Cell. 21(5), 604-617.

Benford, H., Bolborea, M., Pollatzek, E., Lossow, K., Hermans-Borgmeyer, I., & Liu, B. et al. (2017). A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia, 65(5), 773-789.

Bifari, F., Decimo, I., Pino, A., Llorens-Bobadilla, E., Zhao, S., & Lange, C. et al. (2017). Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex. Cell Stem Cell, 20(3), 360-373.e7.

Biró, I., & Giugliano, M. (2015). A reconfigurable visual-programming library for real-time closed-loop cellular electrophysiology. Frontiers In Neuroinformatics, 9.

Black, E A E., Smith, P M., McIsaac, W., & Ferguson, A V. (2018). Brain‐derived neurotrophic factor acts at neurons of the subfornical organ to influence cardiovascular function. Physiological Reports, 6(10. https://physoc.onlinelibrary.w...

Bright, D., Renzi, M., Bartram, J., McGee, T., MacKenzie, G., & Hosie, A. et al. (2011). Profound Desensitization by Ambient GABA Limits Activation of -Containing GABAA Receptors during Spillover. Journal Of Neuroscience, 31(2), 753-763.

Campbell, J., Macosko, E., Fenselau, H., Pers, T., Lyubetskaya, A., & Tenen, D. et al. (2017). A molecular census of arcuate hypothalamus and median eminence cell types. Nature Neuroscience, 20(3), 484-496.

Chaigneau, E., Ronzitti, E., Gajowa, A M., Soler-Llavina, G J., Tanese, D., Brureau, A Y B., Papagiakoumou, P., Zeng, H., & Emiliani, V. (2016). Two-Photon Holographic Stimulation of ReaChR. Frontiers in Cellular Neuroscience.

Cui, G., Jun, S., Jin, X., Pham, M., Vogel, S., Lovinger, D., & Costa, R. (2013). Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, 494(7436), 238-242.

de Wolf, E., van de Wiel, J., Cook, J., & Dale, N. (2016). Altered CO2 sensitivity of connexin26 mutant hemichannels in vitro. Physiological Reports, 4(22), e13038.

Diez, R., Richardson, M J E., & Wall, MJ. (2017). Reducing Extracellular Ca2+ Induces Adenosine Release via Equilibrative Nucleoside Transporters to Provide Negative Feedback Control of Activity in the Hippocampus. Frontiers in Neural Circuits.

D'Agostino, G., Lyons, D., Cristiano, C., Lettieri, M., Olarte-Sanchez, C., Burke, L K., Greenwald-Yarnell, M., Cansell, C., Doslikova, B., Georgescu, T/. Martinez de Morentin, P B., Myers Jr, M G., Rochford, J J., & Heisler, L K. (2018). Nucleus of the Solitary Tract Serotonin 5-HT2C Receptors Modulate Food Intake. Cell Metabolism, 28(4), 619 - 630.!

Evans, D A., Stempel, A V., Vale, R., Ruehle, S., Lefler, Y., & Branco, T. (2018). A synaptic threshold mechanism for computing escape decisions. Nature, 558.

Fenselau, H., Campbell, J., Verstegen, A., Madara, J., Xu, J., & Shah, B. et al. (2016). A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH. Nature Neuroscience, 20(1), 42-51.

Filipis, L., Quares, K A., Moreau, P., Tanese, D., Zampini, V., Latini, A., Bleau, C., Bleau, C., Graham, J., & Canepari, M. (2017). A novel multisite confocal system for rapid Ca2+ imaging from submicron structures in brain slices. Journal of Biophotonics.

Fino, E., Vandecasteele, M., Perez, S., Saudou, F., & Venance, L. (2018). Region-specific and state-dependent action of striatal GABAergic interneurons. Nature Communications, 3339(9).

Franklin, T., Silva, B., Perova, Z., Marrone, L., Masferrer, M., & Zhan, Y. et al. (2017). Prefrontal cortical control of a brainstem social behavior circuit. Nature Neuroscience, 20(2), 260-270.

Jiang, Y., Jakovcevski, M., Bharadwaj, R., Connor, C., Schroeder, F., & Lin, C. et al. (2010). Setdb1 Histone Methyltransferase Regulates Mood-Related Behaviors and Expression of the NMDA Receptor Subunit NR2B. Journal Of Neuroscience, 30(21), 7152-7167.

Kozasa, Y., Nakashima, N., Ito, M., Ishikawa, T., Kimoto, H., Ushijima, K., Makita, N., & Takono, M. (2018). HCN4 pacemaker channels attenuate the parasympatheticresponse and stabilize the spontaneous firing of the sinoatrial node. The Journal of Physiology. 596(5), 809-825. https://physoc.onlinelibrary.w...

Lalanne, T., Oyrer, J., Mancino, A., Gregor, E., Chung, A., & Huynh, L. et al. (2015). Synapse-specific expression of calcium-permeable AMPA receptors in neocortical layer 5. The Journal Of Physiology, 594(4), 837-861.

Linaro, D., Biro, I., & Giugliano, M. (2018). Dynamical response properties of neocortical neurons to conductance-driven time-varying inputs. European Journal of Neuroscience, 47, 17-32.

Marcantoni, A., Raymond, E., Carbone, E., & Marie, H. (2013). Firing properties of entorhinal cortex neurons and early alterations in an Alzheimer's disease transgenic model. Pflügers Archiv - European Journal Of Physiology, 466(7), 1437-1450.

Mager, T., Lopez de la Morena, D., Senn, V., Schlotte, J., D'Errico, A., Feldbauer, K., Wrobel, C., Jung, S., Bodensiek, K., Rankovic, V., Browne, L., Huet, A., Juttner, J., Wood, P G., Letzkus, J J., Moser, T., & Bamberg, E. (2018). High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nature Communications, 9.

Meigh, L., Greenhalgh, S., Rodgers, T., Cann, M., Roper, D., & Dale, N. (2013). CO2directly modulates connexin 26 by formation of carbamate bridges between subunits. Elife, 2.

Mittal, N., Minasyan, A.,Romaneschi, N., Hakimian, J K., Gonzalez-Fernandez, G., Albert, R., Desai, N., Mendez, I A., Schallert, T., Ostlund, S B., & Walwyn, W. (2017). Beta-arrestin 1 regulation of reward-motivated behaviors and glutamatergic function. PLOS ONE.

Molosh, A I., Dustrude, E T., Lukkes, J L., Fitz, S D., Caliman, I F., Abreu, A R R., Dietrich, A D., Truitt, W A., Ver Donck, L., Ceusters, M., Kent, J M., Johnson, P L., & Shekhar, A. (2018). Panic results in unique molecular and network changes in the amygdala that facilitate fear responses. Molecular Psychiatry.

Nadella, K., Roš, H., Baragli, C., Griffiths, V., Konstantinou, G., & Koimtzis, T. et al. (2016). Random-access scanning microscopy for 3D imaging in awake behaving animals. Nature Methods, 13(12), 1001-1004.

Nakajima, R., & Baker, B J/ (2018). Mapping of excitatory and inhibitory postsynaptic potentials of neuronal populations in hippocampal slices using the GEVI, ArcLight. Journal of Physics D: Applied Physics, 51.

Ostrovskaya, O., Xie, K., Masuho, I., Fajardo-Serrano, A., Lujan, R., Wickman, K., & Martemyanov, K. (2014). RGS7/Gβ5/R7BP complex regulates synaptic plasticity and memory by modulating hippocampal GABABR-GIRK signaling. Elife, 3.

Peng, C., Yan, Y., Kim, K J., Eagle, S E., Berry, J N., McIntosh, M., Neve, R L., Drenan, R M. (2018). Gene editing vectors for studying nicotinic acetylcholine receptors in cholinergic transmission. European Journal of Neuroscience.

Pisanello, M., Pisano, F., Sileo, L., Maglie, E., Bellistri, E., Spagnolo, B., Mandelbaum, G., Sabatini, B L., Vittorio, M D., & Pisanello, F. (2018). Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers. Scientific Reports, 8(4467).

Popescu, I R., Le, K Q., Palenzuela, R., Voglewede, R., & Mostany, R. (2017). Marked bias towards spontaneous synaptic inhibition distinguishes non-adapting from adapting layer 5 pyramidal neurons in the barrel cortex. Scientific Reports, 7.

Rizzo, A., Domencio Lemme, E., Pisano, F., Pisanello, M., Sileo, L., De Vittorio, M., & Pisanello, F. (2018). Laser micromachining of tapered optical fibers for spatially selective control of neural activity. Microelectric Engineering, 192, 89-95.!

Salvatori, I., Ferri, A., Scaricamazza, S., Giovannelli, I., Serrano, A., Rossi, S., D'Ambrosi, N., Cozzolino, M., Di Giullio, A., Moreno, S., Valle, C., & Carri, M T. (2018). Differential toxicity of TAR DNA‐binding protein 43 isoforms depends on their submitochondrial localization in neuronal cells. Journal of Neurochemistry, 146(5), 585 - 597.

Schmidt, S L., Dorsett, C R., Iyengar, A P., & Fröhlich, F. (2016). Interaction of Intrinsic and Synaptic Currents Mediate Network Resonance Driven by Layer V Pyramidal Cells. Cerebral Cortex, 27(9), 4396-4410.

Seeholzer, L F., Seppo, M., Stern, D L., & Ruta, V. (2018). Evolution of a central neural circuit underlies Drosophila mate preferences. Nature, 559, 564-569.

Skocek, O., Nobauer, T., Weilguny, L., Marinez Traub, F., Xia, C N., Molodtsov, M I., Grama, A., Yamagata, M., Aharoni, D., Cox, D D., Golshani, P., & Vaziri, A. (2018). High-speed volumetric imaging of neuronal activity in freely moving rodents. Nature Methods, 15. 429 - 432.

Sevetson, J., Fittro, S., Heckman, E., & Haas, J. (2017). A calcium-dependent pathway underlies activity-dependent plasticity of electrical synapses in the thalamic reticular nucleus. The Journal Of Physiology.

Shemesh, O A., Tanese, D., Zampini, V., Linghu, C., Piatkevich, K., Ronzitti, E., Papagiakoumou, E., Boyden, E S., & Emiliani, V. (2017). Temporally precise single-cell-resolution optogenetics. Nature Neuroscience, 20, 1796-1806.

Vervliet, T., Gerasimenko, J V., Ferdek, P E., Jakubowska, M A., Petersen, O H., Gerasimenko, O V., & Bultynck, G. (2018). BH4 domain peptides derived from Bcl-2/Bcl-XL as novel tools against acute pancreatitis. Cell Death Discovery, 4(58),

Volkova, E., Rozov, A., Nadareishvili, G., & Bol’shakov, A. (2016). Corticosterone Induces Rapid Increase in the Amplitude of Inhibitory Response in Hippocampal Synapses with Asynchronous GABA Release. Bulletin Of Experimental Biology And Medicine, 160(5), 628-631.

Willem, M., Tahirovic, S., Busche, M., Ovsepian, S., Chafai, M., & Kootar, S. et al. (2015). η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature, 526(7573), 443-447.

Yeh, C-Y., Asrican, B., Moss, J., Quintanilla, LJ., He, T., Mao, X., Cassé, F., Gebara, E., Bao, H., Lu, W., Toni, N., & Song, J. (2018). Mossy Cells Control Adult Neural Stem Cell Quiescence and Maintenance through a Dynamic Balance between Direct and Indirect Pathways. Neuron, 99(3), 493 - 510.!


Motorised Objective Changer (MOC)

The MOC can change smoothly between the two objectives and display within 'Linlab' which objective is in position. The user has full control over the speed of objective exchange. The intelligent motion will allow your objectives to be placed safely into your chamber. It also retains par focality and par centrality, so you can switch lenses and keep your sample perfectly in focus, and centrally placed by storing the optimum settings with the control options.

Motorised objective

Objective Changer

The Objective Changer allows a seamless way to change objectives, enabling easy switching between high and low magnification. It is ideal for use in electrophysiology experiments, where a low magnification objective is required for gross positioning of the pipette and a larger magnification is required when approaching a cell.

Scientifica Objective Changer

LED System (780 or 850 nm)

LED module to attach to transmitted illumination port on Scientifica SliceScope, handset with illuminated on/off switch, intensity control knob, power supply 90-250V. Suitable for IR DIC, Dodt contrast, oblique illumination.


Single position polarizer module

Rotatable single position polarizer module for use on the SliceScope. (It can also fit the excitation band pass filter).

Single position polarizer module

Fluorescence Adaptor Kit

The adapter kit allows you to conveniently and neatly attach the Olympus fluorescence turret to the SliceScope.

Fluorescence adaptor

Filter Wheel

Compact wheel for holding filters. Includes on smooth thumbwheel for rotation of polarisers.

Filter Wheel

Gradient Contrast Tube

A contrast tube for the visualisation of cells in thick tissue slices.

Gradient contrast cube

Contact Form