Scientifica SliceScope upright microscope
×

Thank you

Your quote request has been received and we will be in touch shortly.

Quick Quote

After completion of this form we’ll be in touch within 1 working day.

Scientifica SliceScope

A stable and compact upright microscope designed to meet the demands of complex electrophysiology studies and related techniques - including two-photon imaging and optogenetics.

The small footprint and low noise electronics, as well as the remote control, have made the SliceScope an integral part of electrophysiology rigs around the world, particularly when incorporated into a SliceScope Pro system.

Benefits

Modular and versatile design

This system is a perfect foundation for many different configurations including in vivo or in vitro electrophysiology, multiphoton imaging and confocal imaging.

Slim profile

The slim profile allows easy placement of other equipment around your sample, including manipulators, light sources and perfusion systems.

Fully motorised control

Remote control of the objective and condenser means focus and Koehler can be controlled away from the sample area. Useful for dark/cramped areas or in vivo samples.

Compatible with a wide range of optics

Choose from a comprehensive range of Olympus objectives, condensers, eyepieces and light sources.

Various contrast and illumination choices

The SliceScope is compatible with fluorescence turrets and a broad range of contrast techniques. Use it with LEDs, halogens and broad spectrum white light sources.

SliceScope 360° view

Control options

Control the focus, condenser, translation stage (if included) from any of our remote control options.

Alternatively use Scientifica’s LinLab software, developed specifically to control all of our motorised components and heating and perfusion elements.

Schematics

SliceScope Upright Microscope SchematicsSliceScope Upright Microscope SchematicsSliceScope Upright Microscope Schematics

Benford, H., Bolborea, M., Pollatzek, E., Lossow, K., Hermans-Borgmeyer, I., & Liu, B. et al. (2017). A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia, 65(5), 773-789. http://dx.doi.org/10.1002/glia...

Bifari, F., Decimo, I., Pino, A., Llorens-Bobadilla, E., Zhao, S., & Lange, C. et al. (2017). Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex. Cell Stem Cell, 20(3), 360-373.e7. http://dx.doi.org/10.1016/j.st...

Biró, I., & Giugliano, M. (2015). A reconfigurable visual-programming library for real-time closed-loop cellular electrophysiology. Frontiers In Neuroinformatics, 9. http://dx.doi.org/10.3389/fnin...

Bright, D., Renzi, M., Bartram, J., McGee, T., MacKenzie, G., & Hosie, A. et al. (2011). Profound Desensitization by Ambient GABA Limits Activation of  -Containing GABAA Receptors during Spillover. Journal Of Neuroscience, 31(2), 753-763. http://dx.doi.org/10.1523/jneu...

Campbell, J., Macosko, E., Fenselau, H., Pers, T., Lyubetskaya, A., & Tenen, D. et al. (2017). A molecular census of arcuate hypothalamus and median eminence cell types. Nature Neuroscience, 20(3), 484-496. http://dx.doi.org/10.1038/nn.4...

Cui, G., Jun, S., Jin, X., Pham, M., Vogel, S., Lovinger, D., & Costa, R. (2013). Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, 494(7436), 238-242. http://dx.doi.org/10.1038/natu...

Cui, G., Jun, S., Jin, X., Pham, M., Vogel, S., Lovinger, D., & Costa, R. (2013). Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, 494(7436), 238-242. http://dx.doi.org/10.1038/natu...

de Wolf, E., van de Wiel, J., Cook, J., & Dale, N. (2016). Altered CO2 sensitivity of connexin26 mutant hemichannels in vitro. Physiological Reports, 4(22), e13038. http://dx.doi.org/10.14814/phy...

Fenselau, H., Campbell, J., Verstegen, A., Madara, J., Xu, J., & Shah, B. et al. (2016). A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH. Nature Neuroscience, 20(1), 42-51. http://dx.doi.org/10.1038/nn.4...

Franklin, T., Silva, B., Perova, Z., Marrone, L., Masferrer, M., & Zhan, Y. et al. (2017). Prefrontal cortical control of a brainstem social behavior circuit. Nature Neuroscience, 20(2), 260-270. http://dx.doi.org/10.1038/nn.4...

Hakimian, J., Minasyan, A., Zhe-Ying, L., Loureiro, M., Beltrand, A., & Johnston, C. et al. (2017). Specific behavioral and cellular adaptations induced by chronic morphine are reduced by dietary omega-3 polyunsaturated fatty acids. PLOS ONE, 12(4), e0175090. http://dx.doi.org/10.1371/jour...

Hakimian, J., Minasyan, A., Zhe-Ying, L., Loureiro, M., Beltrand, A., & Johnston, C. et al. (2017). Specific behavioral and cellular adaptations induced by chronic morphine are reduced by dietary omega-3 polyunsaturated fatty acids. PLOS ONE, 12(4), e0175090. http://dx.doi.org/10.1371/jour...

Jiang, Y., Jakovcevski, M., Bharadwaj, R., Connor, C., Schroeder, F., & Lin, C. et al. (2010). Setdb1 Histone Methyltransferase Regulates Mood-Related Behaviors and Expression of the NMDA Receptor Subunit NR2B. Journal Of Neuroscience, 30(21), 7152-7167. http://dx.doi.org/10.1523/jneu...

Lalanne, T., Oyrer, J., Mancino, A., Gregor, E., Chung, A., & Huynh, L. et al. (2015). Synapse-specific expression of calcium-permeable AMPA receptors in neocortical layer 5. The Journal Of Physiology, 594(4), 837-861. http://dx.doi.org/10.1113/jp27...

Lalanne, T., Oyrer, J., Mancino, A., Gregor, E., Chung, A., & Huynh, L. et al. (2015). Synapse-specific expression of calcium-permeable AMPA receptors in neocortical layer 5. The Journal Of Physiology, 594(4), 837-861. http://dx.doi.org/10.1113/jp27...

Marcantoni, A., Raymond, E., Carbone, E., & Marie, H. (2013). Firing properties of entorhinal cortex neurons and early alterations in an Alzheimer's disease transgenic model. Pflügers Archiv - European Journal Of Physiology, 466(7), 1437-1450. http://dx.doi.org/10.1007/s004...

Marcantoni, A., Raymond, E., Carbone, E., & Marie, H. (2013). Firing properties of entorhinal cortex neurons and early alterations in an Alzheimer's disease transgenic model. Pflügers Archiv - European Journal Of Physiology, 466(7), 1437-1450. http://dx.doi.org/10.1007/s004...

Matthews, G., Nieh, E., Vander Weele, C., Halbert, S., Pradhan, R., & Yosafat, A. et al. (2016). Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation. Cell, 164(4), 617-631. http://dx.doi.org/10.1016/j.ce...

Meigh, L., Greenhalgh, S., Rodgers, T., Cann, M., Roper, D., & Dale, N. (2013). CO2directly modulates connexin 26 by formation of carbamate bridges between subunits. Elife, 2. http://dx.doi.org/10.7554/elif...

Nadella, K., Roš, H., Baragli, C., Griffiths, V., Konstantinou, G., & Koimtzis, T. et al. (2016). Random-access scanning microscopy for 3D imaging in awake behaving animals. Nature Methods13(12), 1001-1004. http://dx.doi.org/10.1038/nmet...

Ostrovskaya, O., Xie, K., Masuho, I., Fajardo-Serrano, A., Lujan, R., Wickman, K., & Martemyanov, K. (2014). RGS7/Gβ5/R7BP complex regulates synaptic plasticity and memory by modulating hippocampal GABABR-GIRK signaling. Elife, 3. http://dx.doi.org/10.7554/elif...

Ostrovskaya, O., Xie, K., Masuho, I., Fajardo-Serrano, A., Lujan, R., Wickman, K., & Martemyanov, K. (2014). RGS7/Gβ5/R7BP complex regulates synaptic plasticity and memory by modulating hippocampal GABABR-GIRK signaling. Elife, 3. http://dx.doi.org/10.7554/elif...

Sevetson, J., Fittro, S., Heckman, E., & Haas, J. (2017). A calcium-dependent pathway underlies activity-dependent plasticity of electrical synapses in the thalamic reticular nucleus. The Journal Of Physiology. http://dx.doi.org/10.1113/jp27...

Volkova, E., Rozov, A., Nadareishvili, G., & Bol’shakov, A. (2016). Corticosterone Induces Rapid Increase in the Amplitude of Inhibitory Response in Hippocampal Synapses with Asynchronous GABA Release. Bulletin Of Experimental Biology And Medicine, 160(5), 628-631. http://dx.doi.org/10.1007/s105...

Willem, M., Tahirovic, S., Busche, M., Ovsepian, S., Chafai, M., & Kootar, S. et al. (2015). η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature, 526(7573), 443-447. http://dx.doi.org/10.1038/natu...

Accessories

Motorised Objective Changer (MOC)

The MOC can change smoothly between the two objectives and display within 'Linlab' which objective is in position. The user has full control over the speed of objective exchange. The intelligent motion will allow your objectives to be placed safely into your chamber. It also retains par focality and par centrality, so you can switch lenses and keep your sample perfectly in focus, and centrally placed by storing the optimum settings with the control options.

Motorised objective

LED System (780 or 850 nm)

LED module to attach to transmitted illumination port on Scientifica SliceScope, handset with illuminated on/off switch, intensity control knob, power supply 90-250V. Suitable for IR DIC, Dodt contrast, oblique illumination.

IR-LED

Single position polarizer module

Rotatable single position polarizer module for use on the SliceScope. (It can also fit the excitation band pass filter).

Single position polarizer module

Fluorescence Adaptor Kit

The adapter kit allows you to conveniently and neatly attach the Olympus fluorescence turret to the SliceScope.

Fluorescence adaptor

Filter Wheel

Compact wheel for holding filters. Includes on smooth thumbwheel for rotation of polarisers.

Filter Wheel

Gradient Contrast Tube

A contrast tube for the visualisation of cells in thick tissue slices.

Gradient contrast cube
items in quote basket